Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.16.21263684

ABSTRACT

Summary Background The COVID-19 pandemic has overwhelmed the respiratory isolation capacity in hospitals; many wards lacking high-frequency air changes have been repurposed for managing patients infected with SARS-CoV-2 requiring either standard or intensive care. Hospital-acquired COVID-19 is a recognised problem amongst both patients and staff, with growing evidence for the relevance of airborne transmission. This study examined the effect of air filtration and ultra-violet (UV) light sterilisation on detectable airborne SARS-CoV-2 and other microbial bioaerosols. Methods We conducted a crossover study of portable air filtration and sterilisation devices in a repurposed ‘surge’ COVID ward and ‘surge’ ICU. National Institute for Occupational Safety and Health (NIOSH) cyclonic aerosol samplers and PCR assays were used to detect the presence of airborne SARS-CoV-2 and other microbial bioaerosol with and without air/UV filtration. Results Airborne SARS-CoV-2 was detected in the ward on all five days before activation of air/UV filtration, but on none of the five days when the air/UV filter was operational; SARS-CoV-2 was again detected on four out of five days when the filter was off. Airborne SARS-CoV-2 was infrequently detected in the ICU. Filtration significantly reduced the burden of other microbial bioaerosols in both the ward (48 pathogens detected before filtration, two after, p =0.05) and the ICU (45 pathogens detected before filtration, five after p =0.05). Conclusions These data demonstrate the feasibility of removing SARS-CoV-2 from the air of repurposed ‘surge’ wards and suggest that air filtration devices may help reduce the risk of hospital-acquired SARS-CoV-2. Funding Wellcome Trust, MRC, NIHR


Subject(s)
COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.19.20156869

ABSTRACT

Samples for diagnostic tests for SARS-CoV-2 can be obtained from the upper (nasopharyngeal/oropharyngeal swabs) or lower respiratory tract (sputum or tracheal aspirate or broncho-alveolar lavage - BAL). Data from different testing sites indicates different rates of positivity. Reverse-transcriptase polymerase chain reaction (RT-PCR) allows for semi-quantitative estimates of viral load as time to crossing threshold (Ct) is inversely related to viral load. ObjectivesThe objective of our study was to evaluate SARS-CoV2 RNA loads between paired nasopharyngeal (NP) and deep lung (endotracheal aspirate or BAL) samples from critically ill patients. MethodsSARS-CoV-2 RT-PCR results were retrospectively reviewed for 51 critically ill patients from 5 intensive care units in 3 hospitals ; Addenbrookes Hospital Cambridge (3 units), Royal Papworth Cambridge (1 unit), and Royal Sunderland Hospital (1 unit). At the times when paired NP and deep lung samples were obtained, one patient had been on oxygen only, 6 patients on non-invasive ventilation, 18 patients on ECMO, and 26 patients mechanically ventilated. ResultsResults collected showed significant gradient between NP and deep lung viral loads. Median Ct value was 29 for NP samples and 24 for deep lung samples. Of 51 paired samples, 16 were negative (below limit of detection) on NP swabs but positive (above limit of detection) on deep lung sample, whilst 2 were negative on deep sample but positive on NP (both patients were on ECMO). ConclusionsIt has been suggested that whilst SARS-CoV1 tends to replicate in the lower respiratory tract, SARS-CoV2 replicates more vigorously in the upper respiratory tract. These data challenge that assumption. These data suggest that viral migration to, and proliferation in, the lower respiratory tract may be a key factor in the progression to critical illness and the development of severe acute respiratory syndrome (SARS). Factors which promote this migration should be examined for association with severe COVID-19. From a practical point of view, patients with suspected severe COVID-19 should have virological samples obtained from the lower respiratory tract where-ever possible, as upper respiratory samples have a significant negative rate.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL